Global Ranking via Data Fusion

نویسندگان

  • Hong-Jie Dai
  • Po-Ting Lai
  • Richard Tzong-Han Tsai
  • Wen-Lian Hsu
چکیده

Global ranking, a new information retrieval (IR) technology, uses a ranking model for cases in which there exist relationships between the objects to be ranked. In the ranking task, the ranking model is defined as a function of the properties of the objects as well as the relations between the objects. Existing global ranking approaches address the problem by “learning to rank”. In this paper, we propose a global ranking framework that solves the problem via data fusion. The idea is to take each retrieved document as a pseudo-IR system. Each document generates a pseudo-ranked list by a global function. The data fusion algorithm is then adapted to generate the final ranked list. Taking a biomedical information extraction task, namely, interactor normalization task (INT), as an example, we explain how the problem can be formulated as a global ranking problem, and demonstrate how the proposed fusion-based framework outperforms baseline methods. By using the proposed framework, we improve the performance of the top 1 INT system by 3.2% using the official evaluation metric of the BioCreAtIvE challenge. In addition, by employing the standard ranking quality measure, NDCG, we demonstrate that

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractal-wavelet-fusion-based re-ranking of joint roughness coefficients

Nowadays, Barton’s Joint Roughness Coefficients (JRC) are widely used as the index for roughness and as a challenging fracture property. When JRC ranking is the goal, deriving JRC from different fractal/wavelet procedures can be conflicting. Complexity increases when various rankings outcome from different calculation methods. Therefore, using Barton’s JRC, we cannot make a decision based on th...

متن کامل

An Effective and Optimal Fusion Rule in the Presence of Probabilistic Spectrum Sensing Data Falsification Attack

Cognitive radio (CR) network is an excellent solution to the spectrum scarcity problem. Cooperative spectrum sensing (CSS) has been widely used to precisely detect of primary user (PU) signals. The trustworthiness of the CSS is vulnerable to spectrum sensing data falsification (SSDF) attack. In an SSDF attack, some malicious users intentionally report wrong sensing results to cheat the fusion c...

متن کامل

Valuing Indirect Citations in Citation Networks using Data Fusion

Any scientific activity requires awareness of previous related activities. Citation networks are the networks in which each document is compared as a link of a chain with its previous and next documents, and the documents with the highest number of citations are considered as the most effective ones in a domain. Most of the introduced methods use direct citations for valuing the documents. One ...

متن کامل

Learning to rank with combinatorial Hodge theory

We propose a number of techniques for learning a global ranking from data that may be incomplete and imbalanced — characteristics that are almost universal to modern datasets coming from e-commerce and internet applications. We are primarily interested in cardinal data based on scores or ratings though our methods also give specific insights on ordinal data. From raw ranking data, we construct ...

متن کامل

A novel ranking method for intuitionistic fuzzy set based on information fusion and application to threat assessment

A novel ranking method based on multi-time information fusion is proposed for intuitionistic fuzzy sets (IFSs) and applied to the threat assessment problem, a multi-attribute decision making (MADM) one. This method integrates a designed intuitionistic fuzzy entropy (IFE), the closeness degree of technique for order preference by similarity to ideal solution (TOPSIS), the decision maker¡¯s (DM¡¯...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010